A 3D computational model for understanding tuberculosis lesions dynamics in lungs
نویسندگان
چکیده
Tuberculosis (TB) is an infectious bacterial disease caused by Mycobacterium tuberculosis (Mtb), which most commonly affects the lungs. In healthy people, an infection with Mtb often causes no symptoms, remaining controlled as a non-contagious latent tuberculosis infection. World Health Organization estimates that one third of the world population is already infected by this bacillus. From those, a 10% will probably develop an active disease the next decade. Nowadays, over 1 million people die annually because of an active TB. The mechanisms that maintain a latent infection for a few years or that make it evolving towards an active disease are not fully understood, yet. In a previous work, the dynamics of TB lesions during an active disease in mice was described by an Agent-Based Model (ABM). This model accounted for the growth, coalescence and proliferation of lesions, showing that the most important mechanism for lesions growth during the active disease was coalescence. In a later work, the dynamics of lesions during a latent infection in minipigs was tackled by implementing a revised version of the previous ABM into a computational model of the bronchial tree. The model was fed with Computed Tomography scan data from latent infection in minipigs. In this case, the model showed that the proliferation of lesions through the bronchial tree was essential for maintaining the latent infection. In this Master thesis we propose a first approach on the evolution of a latent tuberculosis infection into an active disease. The parameter space will be explored trying to elucidate which is the role of each mechanism on the trigger for the disease.
منابع مشابه
Computational Fluid Dynamics Simulation and Experimental Validation of Hydraulic Performance of a Vertical Suspended API Pump (RESEARCH NOTE)
For a long period of time, design and manufacturing technology of high flow rated vertically suspended pumps (VSPs) which have an extensive applications in many industries such as water and wastewater, mining, petrochemical and oil and gas industries, used to be imported from European countries. For the first time in Iran's pump industry, with the support of Ministry of Petrochemical[ah1] and ...
متن کاملNumerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions
Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...
متن کاملEvaluation of the Droplet Collapsibility in Inhalation Drug Delivery through a 3D Computational Study
Background: Several multiphase flow analyses have been developed to predict the fate of particles used in inhalation drug delivery; however, the collapse of droplets during their passage through respiratory tract has not been investigated. Objective: To assess the probability of droplet collapse in the upper respiratory tract.Methods: A 3D model of mouth-to-second generation airway after the tr...
متن کاملCFD-Calculation of Fluid Flow in a
An accurate description of the fluid flow and heat transfer within a Pressurized Water Reactor (PWR), for the safety analysis and reactor performance is always desirable. In this paper a mathematical model of the fundamental physical phenomena which are associated to a typical PWR is presented. The mathematical model governs the fluid dynamics in the reactor. Using commercial software CFX, a co...
متن کاملLocal Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model
The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous re...
متن کامل